Código de asignatura: CB223 Nombre corto: Álgebra Lineal

Nombre del programa académico	Química Industrial
Nombre completo de la asignatura	Álgebra Lineal
Área académica o categoría	Ciencias Naturales y Matemáticas
Semestre y año de actualización	2022-1
Semestre y año en que se imparte	Semestre 2 – Año 1
Tipo de asignatura	[X] Obligatoria [] Electiva
Número de créditos ECTS	5
Director o contacto del programa	Hoover Albeiro Valencia Sanchez
Coordinador o contacto de la asignatura	Carlos Arturo Escudero Salcedo.

Descripción y contenidos

1. Breve descripción: "El proceso de enseñanza-aprendizaje del Álgebra Lineal concebido como un sistema, en el cual se tienen en cuenta sus componentes fundamentales debe capacitar al estudiante para hacer lecturas en contextos discursivos en los que se apliquen los conceptos y procedimientos centrales del curso y por tanto le provee autonomía e independencia intelectual, promueve el desarrollo de su pensamiento, permitiéndole abstraer, generalizar, formalizar, argumentar, demostrar y representar adecuadamente conceptos; las cuales son capacidades y competencias fundamentales para un ingeniero. Además, lo reviste de herramientas y le proporciona las bases matemáticas necesarias para abordar con éxito los cursos que requieren del álgebra lineal, consiguiendo modelar y resolver diferentes tipos de aplicaciones. También, le brinda al alumno la oportunidad de incorporar e interiorizar algoritmos, por ejemplo de cálculo matricial y vectorial, pues la algoritmia, aunque de bajo nivel, es un razonamiento deductivo y por ser este característico de lo que se llama razonamiento matemático, debe estar presente en la formación matemática del ingeniero" (Uzuriaga, 2006, p. 14).

3. Objetivos del Programa: Formar al estudiante para resolver de manera autónoma problemas complejos, utilizando conocimientos de las ciencias básicas, sociales y de la ingeniería.

Objetivos de la Asignatura: Fortalecer la capacidad del estudiante para modelar situaciones y resolver problemas de su vida profesional con herramientas del álgebra lineal.

4. Resultados de aprendizaje

Competencias específicas:

- Analizar y encontrar el conjunto solución de sistemas de ecuaciones lineales para modelar situaciones de ingeniería con sistemas de ecuaciones lineales.
- Identificar, describir y usar vectores en n dimensiones y sus propiedades en aplicaciones geométricas como ángulos, distancias, proyecciones, rectas, planos e hiperplanos, para el modelamiento de sistemas físicos. Identificar las propiedades de las operaciones de las matrices como espacio vectorial y usarlos en la modelación y solución de problemas de ingeniería.
- Identificar espacios vectoriales, encontrar e identificar conjuntos generadores y bases de espacios vectoriales y su dimensión, aplicaciones como las variables de estado que definen el comportamiento dinámico de los sistemas en ingeniería.
- Identificar transformaciones lineales, los subespacios asociados a una transformación lineal y sus dimensiones. Interpretar geométricamente transformaciones lineales, aplicadas en la optimización de los modelos en ingeniería. Calcular y usar valores y vectores propios de transformaciones lineales en problemas de ingeniería en el comportamiento dinámico de los sistemas físicos, y en matemáticas como formas cuadráticas y secciones cónicas. **Otras competencias por formar:**
- Identificar, plantear y solucionar problemas en el campo de la ingeniería
- Resolver problemas de manera autónoma con base en los procedimientos, leyes y lenguajes de las ciencias naturales y las matemáticas.

•

5. Contenido

Sistema de ecuaciones lineales. Geometría vectorial. Matrices y determinantes. Espacios vectoriales. Transformaciones lineales. Valores y vectores propios

6. Requisitos: Matemáticas I

7. Recursos

- Uzuriaga Vivian, Martínez Alejandro. (2015). Álgebra Lineal desde un enfoque desarrollador. Editorial Universidad Tecnológica de Pereira.
- Material de trabajo: Martínez Acosta Alejandro, Uzuriaga López Vivian Libeth. (2017). Lecciones de Algebra Lineal. Libro de trabajo para estudiantes y guía didáctica del docente. En prensa.

Referencias bibliográficas

- Grossman Stanley. (2012). Álgebra Lineal con aplicaciones. Séptima edición. McGraw Hill.
- Kolman Bernard. (2006). Álgebra lineal con aplicaciones y Matlab. Octava edición. Prentice Hill

Nakos George, Joyner David. (2006). Álgebra lineal con aplicaciones. International Thomson.

8. Herramientas técnicas de soporte para la enseñanza

Talleres que contienen ejercicios en los que se presentan: Una situación problema que los lleve a involucrar los temas a desarrollar durante la unidad de trabajo o tema, o la puedan resolver al indagar y usar sus conocimientos previos. Actividades que pueden ser de teoría que les permita proponer alguna solución, generalización, clasificación o particularización.

Preguntas para decidir su valor de verdad, con las cuales se verifican los conceptos, el alumno propone hipótesis, conjeturas, argumenta, demuestra o plantea contraejemplos. Además, se le permite familiarizarse con leyes, propiedades y regularidades del tema de cada unidad. Ejercicios de tipo algorítmico o procedimental. Aplicaciones en la vida cotidiana, en el contexto matemático o ingeniería.

Quices en cada clase con diferentes modalidades tales como: Control de lectura, que permitirán identificar si el alumno leyó antes de clase el tema a desarrollar. Es para verificar lectura, no para comprobar si entendió o no el tema. Retroalimentación, para verificar si el estudiante estudió y entendió el tema o temas de las clases anteriores. Le ayudará a retroalimentar su proceso de aprendizaje. Desarrollo de la clase, para valorar la atención y participación del alumno en la clase.

9. Trabajos en laboratorio y proyectos. NO APLICA

10. Métodos de aprendizaje

Metodologías activas que permite al alumno participar en su proceso de aprendizaje, donde el estudiante lee con anterioridad, se promueva el trabajo en grupo y colaborativo, y facilita al educando el desarrollo de habilidades como: razonar, modelar, argumentar, comunicar y resolver problemas.

El estudiante debe leer con anterioridad, traer preguntas acerca del tema o temas que se van a desarrollar en la clase, haber resuelto los ejercicios correspondientes o las dudas y sugerencias que hayan surgido al momento de desarrollarlos o intentar solucionarlos. Predomina la discusión, la argumentación, más que la clase expositiva y magistral por parte del docente.

11. Métodos de evaluación

La evaluación es un proceso continuo de aprendizaje, de formación permanente. Se hace autoevaluación y coevaluación en el momento de sustentación de talleres y en algunos quices, con un porcentaje de 25%

Heteroevaluación, en pruebas parciales escritas.

Las pruebas parciales escritas se realizarán así: dos exámenes parciales y un examen final. Todos los exámenes son de igual duración (2 horas) e igual porcentaje cada uno de 25%